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12-3 CHEBYSHEV FILTERS

An alternative way of approximating the ideal characteristics of Fig. 12-3 is to
obtain an equal-ripple error in the range 0 < @ < w,,. It is convenient to introduce
immediately frequency normalization, with

wy = 27f, (12-38)

as the frequency unit; i.e., we are normalizing to the passband limit. The desired
response is then that shown in Fig. 12-11. The oscillatory response in the pass-
band immediately suggests a squared and horizontally compressed trigonometric
function. Hence, we attempt to find the solution for |K|* in the form+

| K |? = k. cos® nu(Q) (12-39)
where u(€2) is some function of Q. If we choose
u(Q) =cos™ ' Q (12-40)

the following conclusions can be drawn:

I. |K|?is a polynomial in Q2 since
cos nut = Re (e)" = Re (cos u + j sin u)"

n "
= CcOos" U — (;) cos" 2 u (1 — cos® u) + (4) cos" * u (1 — cos® up?> — + -

+ Of course, this solution can also be found in a less heuristic wayv, See. for example. N. Balabanian.
“Network Synthesis.” Prentice-Hall, Englewood Cliffs, N.J., 1958,

Y

Figure 12-11 Chebyshev passband loss response.
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where () = n!/[k!(n — k)!]. From Eq. (12-41) it is obvious that for n even (odd),
cos nu is a pure even (odd) polynomial in cos u. From this fact and Egs. (12-39)
and (12-40) our statement follows.

|K|? oscillates between 0 and kj for —1 <@ < +1. This is true, since by
Eq. (12-40) in this range u is rcal and as Q grows from —1to +1, u can be
considered to grow from —z to 0. (In fact, cos™ ! Q is multivalued, and hence
this choice is arbitrary.) Hence, | K |? oscillates between zero and k},taking on
the value 0 a total of » times and the value kZ a total of n + 1 times between
-Q,=—land Q, = +1.

3. For values of Q greater than 1, | K |? tends monotonically to infinity. This can

be seen from the relation

)

cos nu = He™ + e I™)
= §[{cos u + /cos? u — 1)" + (cos u + J/cos* u— 1) "]
={@+./ -+ @+ /¥ -1)7] (12-42)
For Q - o, cos nu — 2°1Q¥", and hence |K|? — k223" 2Q*".
Due to the described properties, the filter defined by Egs. (12-39) and (12-40)

does indeed have the behavior shown in Fig. 12-11 (which illustrates the n =7
case). The maximum passband loss o, and k, are related, from Eq. (12-1), by

2, = 10 log (1 + &2) (12-43)

Filters which have |K | given by (12-39) and (12-40) are called Chebysher
filters after the mathematician first analyzing the properties of the polynomials
cos (n cos™ ! x), called Chebysher polynomials.

Let us now compare the stopband responses of a Butterworth and a Cheby-
shev filter with the same passband limit, say €, = 1, and the same maximum
passband loss «,. In the stopband, typically x> 30 dB, and hence by (12-1)
|K|* » I; therefore

xx 20 log | K| (12-44)
Then, for the loss x,; of the Butterworth filter, using Eq. (12-34), we get
2= 10 log k2Q%" = 20 log k, + 20n log Q (12-45)
while for the loss 2, of the Chebyshev filter of the same degree n,
Q xep = 20 log k, + (10)(2n ~ 2) log 2 + 20n log 0 (12-46)
Hence, at the same stopband frequency Q,
Aop < 2p+ 6.02(n — 1) (12-47)

For even moderate degrees, the additional stopband loss 6.02(n — 1) dB of the
Chebyshev filter is significant. For example, for n =5, the added loss is over
24 dB. This illustrates that the Chebyshev filter is significantly more efficient in its
loss characteristics than the Butterworth filter.

Since | K |? is a polynomial function of Q* as we have already seen from



ECE 580 — Network Theory Tellegen’s Theorem 157
Sec. 12 Temes-Lapatra

Eqgs. (12-39) to (12-41), all poles of | K% that is, all loss poles, lie at  — co. The
reflection zeros, by Eq. (12-39), are located at values of u satisfying

{r)

2k — 1
nu;, " = —_2 =%

k=12..,n (12-48)
2
or, using Eq. (12-40),

2K~ 1

O =cosuf’ =cos— —n k=12 ...n (12-49)

The natural modes S, and their mirror images can be found by extending
Egs. (12-39) and (12-40), which are valid on the jQ axis only. Hence, replacing Q
by S/j, we get

KPP+ 1=kZcos® nu+1=0  §,=jcosu k=12, ...,2n
(12-50)

We have to select the S, in the LHP as the natural modes.
Anticipating complex solutions for both u, and S,, we have by analytic
continuation

uk = Uk ‘*‘“jwk S" Lo Ek +ij (12'51)
where ,, w,, 5, and , are all real. Then, using the familiar identity

cos(x+jy)=cosxcosjy_sinxsinjymcosxcoshy—jsin x sinh y

(12-52)
by the first relation in Eq. (12-50) we have
cos nu;, = ¢os nv, cosh nw, — j sin ny, sinh nw, = + ; (12-33)
r
Equating real and imaginary parts on both sides, we get
i
cos nv, cosh nw, =0  sin ny, sinh nw, = + T (12-54)
P
Since cosh nw, > 0, we can write
2k -1
ny, = + — 5" kel 2 . (12-55)
and hence sin ny, = +1 and
: 1
sinh nw, = + - (12-56)
P
1. 1 1 1
w,==+ sinh™! —=+4+—-In|—+ —1—2+1
n k, n Ry k;
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At this stage, v, and w, are known, from Egs. (12-55) and (12-56). Substituting into
Eq. (12-50) gives
S* = Z;‘ +ij =j COs Uy :j COs (Uk +jwk)
(12-57)

Z, + j&4 = j cos v, cosh wy + sin y, sinh w,
(12-58)

Z; = sin v, sinh w, Q, = cos v, cosh w,

Hence,
ot, from Egs. (12-55) and (12-56),
I, = —sin (z—%m:i E)l(a”" -~ g~ ")
n 2J2
(12-59)
(2k -1 n) 1
Q. =cos | e
n 2

2
InEq. (12-59), k= 1,2, ..., n, and
1 ['1
s =
a kp+ k;+l

The locus of the S, in the S plane can be found by solving the two equations in
(12-59) for sin [(2k — 1)m/2n] and cos [(2k — 1)n/2n], respectively, and then squar-

(alin _|_ a— l,"ﬂ)

(12-60)

2k wij 1:)

ing and adding the two relations. This gives
= % + & = sin? i + cos?
[(alfn i a—l{n)/2]2 {(alfn ta 1in)/2]2 - 2 n 2
= ] (12-61)
Hence, the locus is an ellipse, with half axes (a'” + a~/")/2 and (a'/" — a~2)/2.
The natural modes for the n = 4 case are illustrated in Fig. 12-12.
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Next, the degree n necessary to satisfy a given set of specifications will be
derived. For requirements of the form shown in Eq. (12-20), from Egs. (12-39) and
(12-40), we find that the passband requirement is always satisfied if &, is obtained
from (12-43) and if the normalization

0= (fo - 5;1 - ;; (12-62)
is used. To satisfy the stopband specification (Fig. 12-11), we must have
Q) = 10 log [| K(Q)[* + 1] 2 o, (12-63)
By Egs. (12-39) and (12-40), therefore,
k2 cos? nu(Q,) > 101 — 1 u(Q)=cos™! Q, (12-64)
Now since Q. > 1, u{Q,) is imaginary, iLe.,
u(Q,) = jw, (12-65)
but w, = —ju(Q) = —jcos™! Q, =cosh™* Q, (12-66)
is real. By Eq. (12-64),
k, cos njw, = k, cosh nw, > /10410 — 1 (12-67)

Hence, from Egs. (12-66) and (12-67),

J10 _
VI -1 (12-68)

nw, = ncosh™! Q > cosh™!

kF
Next, we can express k, from (12-43)
k= /1070 —] (12-69)
and Q, from (12-23)
Q, |

o oo 12-70
Q== (12-70)

Substituting into (12-68), and using (12-24), we obtain

o /10 ap/10 h*l 1/k

ngEOSh \[“(10“ 1}/(10 1) cos (1/k,) (12-71)

cosh™! Q, "~ cosh™* (1/k)

which is the desired result. It is of some interest to note the similarity of
Egs. (12-25) and (12-71). In both, n can be expressed exclusively in terms of k and
k.

Example 12-4 Design a Chebyshev low-pass filter for the specifications
w,=1dB f,=18MHz o,=50dB f,=7MHz Re=R,=50Q

satisfied earlier by a Butterworth filter.
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As found before, k = 0.257143 and k, = 1.60912 x 1072, Hence, from (12-71}),

cosh™ ! (1/k,)

2 T~ 3902

Hence, n = 4 can be chosen, one lower than for the Butterworth filter. From (12-41)
and {12-40) then

4 2 2
cos 4u = cos* u — (4) cos? u{l — cos® u) + (4){1 —cos® u)? = 8O* - 80% + 1

2
Hence, by (12-39),
[K|? = k3(8Q% — 8Q% + 1)?
where now from (12-69)
k, = /10%710 — 1 = /10%" — | ~ 0.508847

Hence, we can choose

K(S) = +k,(85* + 852 + 1) & +(4.0707765* + 407077652 + 0.508847)
The natural modes can be obtained, say from (12-58), where now, by (12-55),

_tk=dm

4 k=12234

Uy

and, by (12-56),

wy = +4 sinh™!— = +0.356994

1
kP
Hence, for the first natural mode

5, = —sin ’sf sinh 0.356994 ~ —0.139536 £, = cos "’8‘ cosh 0.356994 ~ 0.983379

Proceeding this way, we can find all §; = £, + jQ,. We obtain S, = STand S, = 8% = —
0.33687 + j0.407329. Then

4
HES)=C[](5~-35)
i=1
Here the constant factor C is the coefficient of $* in H(S). By the Feldtkeller equation, the

cocfficients of 5* in K(S) and H(S) must have the same absolute values. Hence
C = +4.070776. The overall function is thus found to be

H(S) = +4070776(8% — 2%, § + Z2 + QI)(§? — 2,5 + £} + Q3)

I

= i(aq_S" + 0383 i a;Sa + a,S + C!o)
where ay = 4070776 ay = 3.878684 a, = 59186
a; = 3.02304 ap = 1.12202

Hence, when we use impedance normalization and choose the positive sign in both K(S)
and H(S), Eq. (6-65) gives

_H,+ K. 81415525 + 9.989385% + 1.630867
M=K~ 3878685 + 3.02304S
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Figure 12-13 (a) Chebyshev filter; {b} equivalent circuit for w = 0; (¢} dual filter.

Developing y,, into a ladder gives the normalized circuit of Fig. 12-13a. The element
values can be found the usual way to be ¢; = 209905, [, = 1.06444, ¢, = 2831, and
I, = 0.7892. The transformer ratio can be found, for example, by developing y,,; it is much
simpler to note, however, that at zero frequency, by Fig. 12-13b, the input impedance is
Z,(0) = ™ 2. Hence, by (6-10), at zero frequency

Re—Z,{0) 1—-t"* -1

p‘(o)”aﬁ+z,(0)”1+:-="‘":2+1

Also, by (6-21),

K(0) _ 0.508847
H(0) 112202
Equating the two expressions and solving for ¢ gives t = +1.630864 (the negative sign
means an inverting transformer).

Using the negative sign in K(S) merely replaces the circuit by its dual. This is shown in
Fig. 12-13¢. The elements are [} = ¢y, ¢3 =13, I = ¢, and ¢ = L,.

p1(0) = ~ 0.453510

As Eq. (12-50) shows, the natural modes S, of the Chebyshev filter depend on
k, and hence on a,,. Therefore, any tabulation of the §,, and hence of H(S) and the
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Figure 12-14 (a) Chebyshev filter response; (b) response after Q — 1/Q transformation: (c) response
after |K|? — 1/|K|? transformation.

element values, must have «, as a parameter, and a different table will apply for
each «,. As an illustration, Tables 12-4 to 12-7 give the natural modes, the
coefficients of H(S), and the element values for Chebyshev filters with «, = 0.5 dB
and &, = 1 dB. The circuit configurations are the same as in Fig. 12-13g and ¢, for
unprimed and primed element values, respectively.

A filter response closely related to the Chebyshev response just discussed is
the inverse Chebyshev (or Chebyshev stopband) characteristics. This can be ob-
tained from the Chebyshev function in the following steps (Fig. 12-14):
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1. Replace Q by Q™' in Eq. (12-39). This will turn the | K|*-vs.-Q curve around,
with the Q = | point as the pivot (Fig. 12-14b).

2. Replace |K [*by | K|~ ?; this will result in the equal-ripple stopband character-
istics shown in Fig. 12-14c.

Accordingly, the squared modulus of the characteristic function for the in-
verse Chebyshev function will be given by the expressions

ks

T 12-72
|X] cos? nu(Q) ( )
1
and u(Q) = cos™! 8 (12-73)
where k2 == 1010 .} & klz (12-74)
7

From the steps leading to Egs. (12-72) to (12-74), it is evident that the unit
frequency is now the stopband limit frequency (Fig. 12-14). It can also be shown
that Eq. (12-71), giving # in terms of k and k,, remains valid for inverse Chebyshev
filters. The proof is left as an exercise (Prob. 12-13). By the construction of | K |? it
also follows that the loss poles are located at the reciprocal frequencies of the
Chebyshev-filter reflection zeros. Hence, by (12-49),

OQiF) = 1
“ 7 cos[(2k — 1)/2mn]

(Fig. 12-14c). The calculation of the natural modes is left to the reader
(Prob. 12-15).

k=12 ...n (12-75)

12-4 EQUAL-RIPPLE PASSBAND AND
GENERAL STOPBAND FILTERS

A generalization of Chebyshev filters, important in practical problems, is provided
by the class of filters with equal-ripple passbands and prescribed finite loss poles.
A typical response is shown in Fig. 12-15a. These circuits are also often called
(somewhat imprecisely) general-parameter filters.

The calculation of such a response with prescribed values of k, (or, equiva-
lently, «,) and of the loss poles Q,, Q,, ... requires some manipulations. Consider
the transformation

ZA JT¥5 2 ReZ>0 (12-76)

Since in the passband § = jQ, {Q| < 1, the values of § in the passband trans-
form into imaginary values jY of Z = X + jY. In the stopband S = jQ, |Q]| > 1,
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Figure 12-15 (a) General-parameter filter response; (b} filter response in the Z domain.

and hence Z is now real; that is, Z = X, where X, by (12-76), is nonnegative. The
transformation is illustrated in Fig. 12-15b by showing the characteristic of
Fig. 12-15a in the Z plane. A loss pole at Q; > 1 is transformed to the real value

X;=+/1-07? (12-77)

and hence clearly 0 < X; < 1. Any loss pole at Q — oo is transformed to X, = 1.
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Process:

n

Form P(Z)=][(Z+ X))
k.Ev(P)

|K(Z)|"= Z ;
[Ev(P)]” —[0d(P)]

Z* 5 1+5s° gives |K(S)12:K(S)K(_S)

Result

|K|*=k’ cos{Zui(Q)}
Q-1 Z
u,(Q)=cos™| Q = =tan~ ——
0 =g JX,

Equiripple for {2 <1, real rational has poles Q, .
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Next we define the polynomial
P(z)2 [](Z + X)) (12-78)
i=1

All desired loss poles X, (including the X ) must be included in P(Z);since poies
at +jQ; and —jQ; map to the same X, such finite poles contribute a squared
factor (Z + X ;)%

Let us now analyze the properties of the function

PPN /.C) PR (C)
P P2)P(=2) " T PLZIF — [P2 T 1= [PA2)/PLZ)P
(12-79)

Here, as before, P, denotes the even part and P, the odd part of P(Z). Clearly,
| K |? is an even rational function in Z, that is, a rational function of Z*. By (12-76)

therefore it is a rational function of §2. Since P(— n( —Z + X;) is con-

tained in the denominator, | K |* possesses the desired poleb X Finally, in terms
of the transformed variable Z, P(Z) is by (12-78) a strictly Hurwitz polynomial
since all X; > 0. Hence, P,(Z)/P.(Z) is a reactance function in Z. Therefore, for
Z =jY, that is, for values of Z in the transformed passband, the function
P(jY)PjY) is pure imaginary and acts as a reactance (Fig. 12-16a). Hence,
—(P,/P,)? is a nonnegative function which oscillates between 0 and oo as Y
increases from 0 to co. Now, as the last expression in (12-79) shows, |K|*> =0
when —(P,/P,) —o0; |KJ? =k} when —(P,/P,)*=0; and 0 < |K|* < K2
when 0 < —(P,/P,)? < co. Thus, | K |* oscillates between 0 and k2 as Y increases
from O to co.

The above results show that | K |? as given in (12-79) does indeed have the
desired response illustrated in Figs. 12-14 and 12-15 and is aiso a realizable
function.t

It is possible to bring (12-79) to a form which indicates clearly that it is an
extension of the Chebyshev filter function defined in Egs. (12-39) and (12-40). It is
easy to see that

k"’[P(Z) P-2)F k[, 1 P2Z) 1P(-2)

|KJ? =
P(Z)P(-2) 2 2P(-2)" 2 P(Z)

(12-80)
Let us now define

us 2 tan™" j—i— (12-81)

t See also Prob. 12-17, which proves that | K |* > 0 in the stopband as well as in the passband.
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1 RljY)
i BLiY)

(a)

»

Figure 12-16 (a) The response of the quasi reactance P,/P,; (b) the behavior of —({P,/P,)* for
2=jY. |

Z+X; _I+jtanwy;  cosu; +j sin u;

Then - = : =
—Z+X; 1-~jtanu; cosu; —jsin u,

= of2u (12-82)

Hence, by (12-78),

P(Z L 2 : -
P Efé) - i]_[ : 7++X)‘? = exp (jZ 3 u,—) (12-83)
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and (12-80) gives

2 i
1K|2='I;‘P 1 + e

kl n n
== |1+ cos (2; u‘” = k2 cos? ('2 u;) (12-84)

=1

Equation (12-84), together with the defining equationt of the u;

Y| I EA s T P 53
in—cos l[l (X:) = COS Q\/stgz)
(12-85)

is compared in (12-86) with the basic equations (12-39) and (12-40) of Chebyshev
filters:
Chebyshev filters:

u; 2tan"!

| K |? = k2 cos® mu(Q)  where u(Q) £ cos™ ! Q (12-86a)

General-parameter filters:

_ n %3 — 1
|[KP = &2 cos’ [ Z”i(Q)J where u(Q) £ cos ! (Q\/%) (12-86b)
i=1 i

"
It is clear that if all Q, — co, then u{Q) —cos™* Q for all i and ) u(Q)—
=1
nu(§)). Hence, the Chebyshev filter is a special case of the general-parameter one.
Equation (12-86) can be also regarded as the defining equation of a general-
parameter filter, and all properties of | K |[* can be derived from it (see, for exam-
ple, Probs. 12-19 to 12-21).
The design procedure to be used when the parameters «,, 2,,Q,, ..., Q, are
prescribed can be readily found from Egs. (12-76) to (12-79). The steps are the
following:

1. Calculate from (12-69)
k2 = 10%/1° — |
and from (12-77)

X, =+ /1-07 i=12..n

+ See Prob. 12-18 for the detailed derivation of Eq. (12-85).
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Note that if there are n_, loss poles specified at Q — oo, n,, of the X, willequal 1.
Note also that a finite pole pair at + j€Q; will result in two equal X, values.
2. Calculate the coefficients of the polynomial

P(Z) = 1‘1 (Z+X)=(Z+ 1)***-("Aﬁ "Z(Z + X)? (12-87)

i=1 i=1

Here, on the right-hand side, the loss poles at infinity have been separated and
collected in the first factor. Each of the remaining factors corresponds to a
+ jQ, pole pair; hence each X, enters only one (squared) factor.

3. From (12-79), calculate the cocfficients of the rational function

{(n—ny)i2 2
{Ev Z+1p [] (Z+X) }
IK|? = kﬁ LI ,«.,.{n_”':”'z - (12-88)

(}_ - ZZ)n,,.. l:l (X‘Z . 22)2

(X0 |

where Ev stands for “even part of.” Only even powers of Z enter |K|?.
4, Using (12-76), replace Z? by 1 + $™2. The result is a rational function of §.
5. Calculate K(S) and H(S) in the usual manner and complete the synthesis.

Example 12-5 Find K(S) and H(S) and design the filter from the following specifications:

1. <028 dBfor | f| < 10 kHz.
2. Desired loss poles: f; = 26 kHz and one pole at infinity.
3. Both terminations are to be 100 Q.

Using g = 2nf, = 2x10* rad/s as the unit radian frequency, we get Q, = 2.6,

Q, = —26, and Q;— co. Hence, by (12-77), X, = X, = /1 = Q7 2 0.923077. Also,
X; = 1. From (12-69),

k2 = 107710 — [ = 10°°28 — | ~ 0.0665961
Next, from (12-87),
P2)=(Z+YZ+X\P=22+a: 2% +a,Z + ap
where a, = 2.846154, a; = 2.698225, and a, = 0.852071. Substituting into (12-88), we get

|KP? = _kpla: Z? + ao)”
T =212

Next, replacing Z? by 1 + 1/8% we obtain

—(bsS® + b, S)?

2”2
IK| (SI—I'Q%)Z
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Figure 12-17 (a) General-parameter filter; (b) its loss response.

where by = 6.451555 and b, = 4965117. Since

538> + b, S)(—b3 5% — b, 8)
(8% + Q)($7 + Q)

K[ = K(S)K(~3) =

clearly we can choose

L b8P+ b, S
K(S)= + I

By the Feldtkeller equation (6-42), E(S)E(—S) = — (b3 5> + b; S)* + (52 + Q})? and
the Hurwitz factor is

E(S) = 6.4515558 + 9.42391352% + 11.770465 + 6.76
Hence, from Table 6-1, choosing the plus sign for K(S), we obtain

E, 94239135 4 676
YE,+ F, 12903115* + 16.735637§

Z;y =2 =R
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1 pole at
2 poles at 26kHz

S, =10kHz
P(Z)=(Z+1)Z+X))

X,=+ lw(ﬂj ~(.923
’ 26

Ev(P) =...

Od(P) =...

| K(Z*) "> K(5)K (=)
H(s)H(=s)=K(s)K(—=s)+1—> H(s),K(s)
E(s)E(—s)=F(s)F(—=s)+ P(s)P(—s) >0
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Synthesizing the two-port using ladder development gives the circuit of Fig. 12-17a. Its
loss response is shown in Fig. 12-17b.

In practical filter design, it is often the minimum permissible value of the loss
in the stopband which is specified, rather than the location of the loss poles. Then
an iterative design procedure, based on Eq. (12-80), can be used. This procedure is
beyond the scope of our book ; the reader should consult Refs. 2 and 3.

Another practical aspect concerns the numerical accuracy of filter design
calculations. It can be shown?? that the use of the transformed variable Z defined
in (12-76) is very advantageous in that it preserves the accuracy of the calculations
even for filters of very high order. This is only true, however, if ail calculations
from the construction of | K|* on all the way to the calculation of the element
values are done in terms of Z rather than S. Again, the reader should consult
Refs. 2 and 3 for the details of this process.

A special case of the class of general-parameter filters is obtained when the
loss poles are located in such a manner that the stopband as well as the passband
is equal-ripple (Fig. 12-18). Since these filters can be treated purely analytically
and their K(S) constructed in terms of elliptic functions, they are called elliptic
filters. A detailed analysis® is quite lengthy and is therefore not included here. An
important property of elliptic filters is that for given &, %, f,, and f they require
the lowest possible degree of all lumped linear filters. They are thus very economi-
cal. Since their design is complicated, industrial filter designers often rely on the
many excellent reference works®-®~# listing the zeros, poles, and element values of
elliptic filters. Since the actual values depend on ®,, d, k, and n, these tables tend
to be voluminous. Table 12-8 contains a tabulation of the natural modes, loss
poles, and clement values of elliptic filters with n = 3, Q,=1,Rs=R; =1 and
a maximum passband reflection factor of 20 percent. The first column contains the
values of 6 £ sin™! k; the second Q,; the third Ain = o, the next four the zeros
and poles, and the last three the element values.

B
NN NN RN
N
N

H -
A £ d

Figure 12-18 Elliptic filter response.
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Table 12-8 Poles, zeros, and element values for third-order elliptic filters
with 20 percent passband reflection coefficient, Q, = I, n = 3, and equal
terminations of 1 QF

H
il
T
H

X "
Ca ‘
Aml'n O 3 g so]

D‘_—‘___""‘___"“‘_

o e T ...
)

=1

Am!a.
] Q dB 0y a, Q, Q, =y € L

(]

I} 57.2987 | 115.77 | 0.84082 | 0.42027 | 1.13143 | 66.1616 | 1.1893 |0.0002 | 1.1540
2| 286537 | 97.70| 084114 | 0.42001 | 1.13150 | 33.0839 | 1.1889 | 0.0008 | 1.1533
31191073 | 87.13| 0.84169 | 0.41958 | 1.13160 | 22.0595 | 1.1881 | 0.0018 | 1.1522
4] 14.3356 | 79.63 | 0.84246 | 041899 | 1.13175 | 16,5483 | 1.1870 | 0.0032 | 1.1507
5| 114737 | 7381 084345 | 041822 | 1.13194 | 132424 | 11856 [0.0050 | 1.1488

6| 95668 | 69.05| 084466 | 041728 | 1.13218 | 11.0392 | 1.1839 |0.0072 | 1.1464
7| 82055 | 6503 084609 | 041617 | 1.13245 | 94661 | 1.1819 | 0.0098 | 1.1436
8| 7.1853 | 61.54| 084776 | 0.41489 | 1.13276 | 8.2868 | 1.1796 [0.0128 | 1.1404

91 63925 58.46| 084965 | 0.41344 | 1.13311 | 7.3700 | 1.1770 | 0.0162 | 1.1367
10| 57588 1 5570 | 0.85177 | 0.41182 | 1.13350 | 6.6370 | 1.1740 | 0.0200 | 1.1326

11| 52408 | 5320 | 085413 | 041003 | 1.13392 | 60377 | 1.1708 [ 00243 | 1.1281
12| 48097 | 5092 | 085673 | 040807 | 1.12438 | 5.5386 | 1.1672 | 00290 | 1,1231
13 | 44454 | 4882 | 0.85957 | 0.40593 | 1.13466 | 5.1166 | 1.1634 | 00342 | 1.1177
141 4.1336 | 46.87 | 0.86266 | 0.40363 | 1.13538 | 4.7552 | 1.1592 (00398 | 1.1119
15| 38637 | 4505 | 0.86600 | 0.40115 | 1.13592 | 4.4423 | 1.1547 | 0.0458 | 1.1057

16 | 3.6280 | 43.35| 0.86959 | 0.39851 | 1.13649 | 4.1088 | 1.1500 {00524 | 1.0990
17| 34203 | 41.75| 087345 | 0.39569 | 1.13709 | 39277 | 1.1449 | 00594 | 1.0919
18 | 32361 | 40.23 | 087759 | 039270 | 1.13770 | 37137 | 1.1595 | 0.0669 | 1.0844
191 30716 | 38.80 | 088199 | 0.38954 | 1.13833 | 3.5224 | 1.1338 | 0.0749 | 1.0764
201 29238 | 3744 0.88668 | 0.38621 | 1.13897 | 33505 | 1.1278 | 0.0834 | 1.0681

21| 27904 | 36.14 | 0.89167 | 0G.38272 | 1.13963 | 3.1951 | 1.1215 [ 00925 | 1.0593
221 26695 1 3490 | 0.R9695 | 0.37905 | 1.14029 | 30541 | 1.1149 |0.1021 | 1.0500
2.5593 | 3371090254 | 0.37521 | 1.14096 | 29256 | 1.1080 |0.1123 | 10404
241 24586 | 3257 | 090845 | 037120 | 1.14162 | 2.8079 | 1.1008 {0.1231 | 1.0303
25 | 23662 | 3147 ) 091469 | 0.36702 | 1.14228 | 2.6999 | 1.0933 |0.1345 | 1.0199

26 | 2.2812 | 3041092127 | 0.36268 | 1.14294 | 2.6003 | 1.0855 [0.1466 | 1.0090
27 | 22027 | 2539 | 052820 | 0.35817 | 1.14358 | 25083 | 1.0773 |0.1593 | 0.9976
28 1 21301 ] 2841 | 093550 | 035349 | 1.14420 | 24231 | 1.0682 | 0.1728 | 0.9850
29| 20627 | 2745 094318 | 034864 | 1.14480 | 2.3438 | 1.0602 | 0.1865 | 0.9733
30 | 20000 | 2653] 0951251 0.34364 | 1.14538 | 2.2701 | 1.0512 | 0.2019 | 0.9612

f Q, Aumin, Ty 73 Q, 2, h=4 fy oy
dB
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Amiﬂ.
i Q, dB Gy a, , Q, |, =0 ¢y I
31 | 19416 | 2563 | 095973 | (0.33847 | 1.14592 | 22012 | 1.0420 { 0.2176 | 0.9483
32| 18871 | 24.76 | 0.96863 | 0.33313 | 114643 | 2,1368 | 10324 | 0.2343 | 0.9349
33 1 1.8361 | 2392 | 097799 | 0.32764 | 1.14689 | 2.0765 | 1.022510.2518 | 0.9212
34 | 17883 | 23.09 | 098780 | 0.32199 | 1.14730 | 20199 | 1.0123 | 0.2702 | 0.9070
35 | 17434 | 2229 | 0.99810 | 0.31619 | 1.14766 | 1.9666 | 1.0019 | 0.2897 | 0.8925
36 | L7013 | 2151 | 1.00890 | 031023 | 1.14796 | 1.9165 | 0.9912 | 0.3103 | 0.8776
37 | 16616 | 20.74 | 102024 | 0.30412 | 1.14819 | 1.8602 | 0.9802 | 0.3320 | 0.8623
38 16243 | 20.00 | 1.03213 | 0.29786 | 1.14835 1.8245 | 0.9689 | 0.3549 | 0.8466
39 | L5890 | 19.27 | 104460 | 0.29147 | 1.14842 | 17823 | 09573 | 0.3791 | 0.8305
40 | 1.5557 | 18.56 | 1.05768 | 0.28493 | 1.14841 | 1.7423 | 0.9455 | 0.4047 | 0.8141
41 1.5243 17.86 1 107140 | 0.27825 | 1.14830 1.7044 | 09334 | 0.4318 | 0.7973
42 | 14945 | 1718 | 108579 | 0.27145 | 1.14810 | 1.6684 | 0.9210 | 0.4605 | 0.7801
43 | 14663 | 1652 | L.10089 | 0.26452 | 1.14778 | 1.6343 | 09084 | 0.4909 | 0.7627
44 | 14396 | 1586 | 1.11673 | 0.25747 | 114735 | 16018 | 0.8055 [0.5232 | 0.7448
45 | 14142 | 1522 113336 | 0.25031 | 1.14679 | 1.5710 | 0.8823 | 0.5576 | 0.7267
46 | 1.3902 | 14.60 | 115082 | 0.24304 | 1.14611 | 1.5415 | 0.8689 | 0.5942 | 0.7082
47 | 13673 | 1398 | 1.16915 | 0.23567 | 1.14528 | 15135 | 0.8553 | 06331 | 0.6895
48 | 1.3456 | 1338 | 1.18840 | 0.22821 | 1.14432 | 14868 | 08415 | 06747 | 0.6705
49 | 13250 | 1279 | 1.20862 | 6.22067 | 1.14320 | 14613 | 08274 | 0.7192 | 0.6511
50 | 13054 | 12,22} 1.22988 | 0.21306 | 1.14192 | 1.4369 | 0.8131 | 0.7668 | 0.6316
51 ] 12868 | 11.65 | 1.25221 | 0.20539 | 1.14048 | 14137 | 0.7986 | 08179 | 0.6118
52 | 12690 | 1110 | 1.27570 | 0.19766 | 1.13887 | 1.3914 | 0.7839 | 0.8728 | 0.5918
53 | 12521 | 1056 | 130040 | 0.18990 | 1.13709 | 1.3702 | 0.7600 | 0.9319 | 0.5716
54 | 12361 | 1003 | 1.32639 | 0.18211 | 1.13512 | 1.3498 | 0.7539 | 0.9958 | 0.5512
55 { 1.2208 9.51 | 1.35374 1 0.17431 | 1.13297 | 1.3303 | 0.7387 | 1.0648 | 0.5306
56 | 1.2062 901 | 1.38253 | 0.16652 | 1.13064 | 13117 | 07233 | 1.1387 | 0.5100
57 1 11924 851 | 141284 | 0.15873 | 112811 1.2938 | 0.7078 | 1.2210 | 0.4892
58 | L1792 803 | 144478 | 0.15008 }1.12540 | 1.2767 | 0.6921 | 1.3097 | 0.4684
59 | 1.1666 757 | 147842 | 0.14328 | 1.12249 | 1.2603 | 0.6764 | 1.4065 | 0.4476
60 | 1.1547 741 | 151387 [ 0.13565 | 1.11939 | 1.2446 | 0.6606 | 1.5127 | 0.4268
¢ Q, Amin, Ty 7y Q, Q, |l =1 f €2
dB
3 —
I Iy
B
[« JESPPORIUNS SSRRENS——-——— 01

! 2

Q, 1.0

} Gz

| : o : o
H 2 3

a
]4 L I

x

+ Reproduced by permission from A. J. Zverev, " Handbook of Filter Synthesis,” p. 177, Wiley,
New York, 1967.



